
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Low-level programming in C [N1Inf1>PLOW]

Course
Field of study
Computing

Year/Semester
2/3

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
polish

Form of study
part-time

Requirements
compulsory

Number of hours
Lecture
12

Laboratory classes
12

Other (e.g. online)
0

Tutorials
0

Projects/seminars
0

Number of credit points
2,00

Coordinators
dr inż. Wojciech Complak
wojciech.complak@put.poznan.pl

Lecturers

Prerequisites
Students starting this course should have a basic knowledge of algorithms and programming in imperative 
programming languages. Students should be able to solve basic problems in the range of design, checking 
the correctness and implementing algorithms in the C programming language and the ability to acquire 
information from the indicated sources. Students should also understand the necessity to broaden own 
competences/be ready to cooperate within the team. In addition, in the field of social competence, the 
student must present such attitudes as honesty, responsibility, perseverance, cognitive curiosity, creativity, 
personal culture, respect for other people.

Course objective
1. Teach students basic knowledge in the field of low-level programming based on the C and assembly 
programming languages. Presentation of the intrinsic functions of the compiler, the X86-32 architecture 
from the point of view of the application programmer, the basics of assembly language in the range of C 
language inline assembly and elements of the binary application interface. 2. Develop the ability to use an 
integrated programming environment in terms of support for low-level programming. 3. Presentation of 
specific hardware mechanisms and ways of using them with the help of intrinsic functions and inlined 
assembly language.



2

Course-related learning outcomes
Knowledge:
1. the student has a structured and theoretically founded general knowledge of key IT issues, and
detailed knowledge of computer systems architecture and imperative programming languages
2. has basic knowledge of the life cycle of IT systems, both hardware and software, in particular about
the system feasibility analysis and detailed design
3. knows the basic techniques, methods and tools used in the process of solving IT tasks in the field of
algorithm analysis, computer systems architecture and algorithm implementation

Skills:
1. the student can - in accordance with the given specification - design, formulate a functional
specification in the form of use cases at the level of formal description, formulate non-functional
requirements for the time characteristic and implement software using an imperative programming
language with the help of appropriate techniques and tools
2. has the ability to formulate algorithms and their implementation using imperative programming
language and an integrated programming environment

Social competences:
1. the student understands that in computer knowledge and skills very quickly become obsolete
2. is aware of the importance of knowledge in solving engineering problems and knows examples and
understands the reasons for malfunctioning IT systems that led to serious financial and social losses or
to serious health conditions or even to death

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Learning outcomes presented above are verified as follows:
Formative assessment:
a) lectures:
- based on answers to questions related to subjects covered during former lectures,
b) laboratory classes:
- based on assessment of progress of implementation of assigned tasks,
Total assessment:
Verification of assumed learning objectives is based on:
- assessment of skills related to solving laboratory exercises,
- continual assessment, during each class (initial tests) - rewarding the progress in the ability to use the
principles and methods learnt,
- assessment of knowledge and skills related to the implementation of project/laboratory tasks through
tests during the third (C programming language) and the fifth (assembly language, assembly + C
languages) laboratory class; tasks are both constructional (i.e. write a program) and analytical (i.e.
determine the result of a given program).
Additional elements cover:
- discussing additional aspects of the class topic,
- ability of using the acquired knowledge while solving a given problem
- remarks related to improving teaching materials,
- pointing out perceptual difficulties enabling ongoing improvement of the teaching process

Programme content
The first lecture is devoted to presentation of the organisation of classes and a discussion/recall of the
basic constructions of the C programming language. During the laboratory classes, the environment is
prepared, and the principles of using, creating and launching programs in the C programming language
are discussed.
The second lecture is devoted to more advanced mechanisms of the C language (C11 standard revision)
such as structures, unions, bit fields and machine representation. Compiler internals, both cross-
platform and specific to the X86 architecture, are also presented. During the laboratory classes, students
create complex programs in the C programming language by analysing the data representation and the
features of internal functions.
The third lecture is devoted to the presentation of the X86-32 architecture, the basics of assembly
programming language, arithmetic, logical and control flow instructions as well as the principles of



3

inlining assembly language into the C language. During the laboratory classes, students begin to write
simple inlined assembly code.
The fourth lecture deals with the stack mechanism, the convention of subroutines calling, passing
parameters and the rules of creating subroutines in assembly language. During the laboratory classes,
students create subroutines in assembly language.
The fifth lecture is a presentation of advanced processing mechanisms (FPU, multimedia and vector
instructions) available on the IA-32 (X86-32) platform and using them with the intrinsic functions of the
C language compiler and assembly language instructions. Examples are shown how to simplify code and
improve performance. The last lecture is devoted to the use of the binary application interface to invoke
system services and to summary of the course.

Teaching methods
1. lecture: multimedia presentation, presentation illustrated with examples shown on the blackboard,
solving tasks, programming tools demonstration,
2. laboratory classes: solving tasks, discussion

Bibliography
Basic
1. Język ANSI C, B. W. Kernighan, D. M. Ritchie, Wydawnictwa Naukowo-Techniczne, dowolne wydanie
2. Mikroprocesory 80286, 80386 i i486, R. Goczyński, M. Tuszyński, Komputerowa Oficyna Wydawnicza
HELP, 1991
3. Koprocesory arytmetyczne 80287 i 80387 oraz jednostka arytmetyki zmiennoprzecinkowej
mikroprocesora i486, M. Tuszyński, R. Goczyński. Komputerowa Oficyna Wydawnicza HELP, 1992
4. MSDN, https://msdn.microsoft.com/
Additional
1. Język C. Szkoła programowania, Wydanie VI, Prata S., Helion, 2016
2. Asembler w koprocesorze, S. Kruk, Wydawnictwo MIKOM, 2003
3. Mikroprocesor 8086, Z. Mroziński, Wydawnictwa Naukowo-Techniczne, 1992
4. Koprocesor arytmetyczny 8087, Z. Mroziński, Wydawnictwa Naukowo-Techniczne, 1992

Breakdown of average student's workload

Hours ECTS

Total workload 50 2,00

Classes requiring direct contact with the teacher 24 1,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

26 1,00


